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Abstract

This paper focuses on printing a 2D color image by using a desktop fused deposition modeling (FDM) 3D printer. A fully
automatic framework is presented to convert a 2D image into a non-photorealistic line drawing which is suitable for 3D printing.
Firstly, an image is partitioned into a moderate number of regions, and contours of these regions are extracted to deliver the high
level abstraction of the image. The contour lines are further refined by taking into consideration the restrictions of 3D printing.
Next, an orientation field based on the contours and feature lines at a finer level is computed to guide the placement of streamlines.
The distances between streamlines are carefully controlled such that the density respects the pixel intensity values. Finally, the
resulting streamlines are converted into printing paths and printed by using filaments with specified colors. Experimental results
show the feasibility and efficacy of our method on portraying a given image by using a few of 3D printable non-intersecting lines
while preserving features and tone variation in the image.

1 Introduction

3D printing is a form of additive manufacturing, where a three dimensional digital model is turned into a solid object by laying
down successive layers of material. 3D printing has a myriad applications in diverse industries, and studies of 3D printing focus
on various aspects for different application backgrounds. In the computer graphics community, how to convert a given 3D object
to meet different fabrication requirements or how to achieve high-quality and cost-effective fabrication has been the focus of many
recent attempts. Instead of addressing the issue of how to print a 3D model, in this paper we focus on printing 2D color images
with a 3D printer.

Among existing 3D printing technologies, fused deposition modeling (FDM) is the most simple-to-use and environment-friendly
one, and FDM based printers designed for home use are also very economical and affordable. It has become the most widely
used 3D printing technology nowadays. Hence, we restrict ourselves to low-end FDM printers in this paper. FDM technology
based printers build objects layer by layer from the very bottom up. In each layer, the print head moves along a prescribed path,
meanwhile, the thermoplastic filament is heated and extruded throughout a nozzle onto the base or the previous layer. Inspired
by this line drawing manner, here we aim at printing a 2D color images using a 3D printer by converting 2D images into a set
of 3D printable lines. Essentially, our goal is to render images in a non-photorealistic line drawing style which can be directly
printed by a 3D printer.

There has been a lot of efforts in computer graphics on generating non-photorealistic images with line drawing style and
impressive results have been achieved [10]. However, those results usually violate the requirements of direct 3D printing indeed.
As a matter of fact, a wide variety of line drawing methods adopt feature edge extraction techniques to capture and convey shape
features of the real scene. Represented by a sequence of pixels, the resulting zigzag lines may be very short, intensively locate at
some regions and intersect with each other. While in 3D printing, fairly smooth and long lines are desired to avoid discretization
artifacts in the final printing results. In particular, sharp turns/corners/endpoints lead to deceleration of the print head and
leaking of filament from the nozzle. Intersections cause the extruder to hit and drag across the already printed parts. Closely
located line segments either prevent the filament extruding from the nozzle or end up with filament bunching up at corresponding
regions. In traditional line drawing methods, lines can be rendered with different colors to better convey the original scene. On the
contrary, printing in multiple colors is non-trivial in FDM based 3D printing as most FDM 3D printers work with a single color.
Some research focus on generating continuous line illustration, i.e., portraying the scene with a single continuous line [17, 18|.
However, it is difficult to trace out the feature lines and convey the tone variation of the 2D images by using a unicursal curve in
general. In a recent literature [4], semi-continuous line illustration was generated for 3D printing. Relying on manual segmentation
results, the line drawing results are able to preserve the contours of the image while features inside each sub-region are ignored.

In this paper, we focus on printing color images using FDM based 3D printers in line drawing style. Several existing techniques
are adapted to our framework to achieve this goal. The specific contributions of this paper are as follows:

(1) We develop a fully automatic non-photorealistic line drawing algorithm for converting a 2D image into a 3D printable line
illustration. After specifying the physical printing size, line width and colors, our method automatically generates visually
pleasant 3D printing results.

(2) We construct printable contours of the input image, which portray the most important features of the image, even with
the strict limitations of printing size and resolution of the 3D printers.

(3) We generate intersection-free and reasonably spaced streamlines, which are suitable for direct 3D printing. In addition,
streamline orientations are well controlled to better convey features at the finer level. Their distribution also approximates
tone variations of the input image precisely.

(4) Our method is capable of obtaining multi-color outputs using 3D printers with a single extruder, without resorting to costly
color 3D printers.
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Figure 1: Overall process. (a) Input image; (b) image segmentation; (c¢) contour extraction; (d) orientation field generation; (e)
streamline placement; and (f) 3D printing.

The remainder of this paper is organized as follows. Related work relevant to our research is presented in Section 2. Details
of our line drawing abstraction algorithm are provided in Section 3. Results of our algorithm are shown in Section 4, while section
5 presents the concluding remarks and possible extension of this work.

2 Related Work

Line drawing is a two-dimensional visual art style featuring of portraying scenes only with lines. Non-photorealistic rendering
(NPR) in line drawing style frequently appears in animations, architecture illustrations, and advertisements. There exist numerous
investigations on generating a line drawing from an image in the field of computer graphics. As the contours or feature lines convey
the most important shape information of an image, most technologies for line drawing are based on the edge detection method,
and the generated lines may vary in width, density and color as necessary to portray the features and the overall shading of the
scene. For detailed discussions on existing line drawing methods, we refer the readers to a recent survey paper [10]. In addition,
some researches address the problem of continuous line illustration, i.e., portraying a scene with a single line. Due to its restricted
nature, the complexity of the problem increases dramatically [2, 17, 18], and the proposed methods are either time-consuming or
rely on user interactions. Image processing techniques for generating mazes from images [19, 16] share some similarities with line
drawing methods which trace contours and approximate the tone of the source image. However, all of these techniques, ignore
the concerns specific to 3D printing (e.g., line width and spacing). Hence, their results are not applicable for direct printing in
general.

With the fast development of modern fabrication technologies, direct drawing of lines in 3D space by using a 3D extruder
becomes possible. Fabricating 3D shapes using multiple wires has led to growing interests in the 3D printing community. While
wireframe fabrication remains challenging, as various geometric and physical constraints should be considered during the entire
drawing process, e.g., the already-fabricated parts should always keep stable and not be collided by the moving extruder. To
speed-up the prototyping process, a regular wireframe is fabricated directly in 3D space using a standard FDM 3D printer,
instead of printing the original solid layer-by-layer [11]. Various 5DOF or 6DOF 3D fabrication systems were also designed to
print geometrically complex wireframe shapes [12, 7]. Huang et al. proposed to generate a feasible fabrication sequence of struts
for creating general frame shapes using a 6DOF robotic fabrication system [8]. A mixed reality system was developed to provide
intuitive guidance for easy 3D drawing using a 3D extruder pen [20].

Instead of drawing lines in 3D space, in this paper we address the more fundamental question of how to depict a color image in
2D domain by using FDM 3D printers. A space filling curve named connected Fermat spiral was introduced as a fundamental 2D
fill pattern for layered fabrication in 3D printing [21]. Printing paths constructed by connected Fermat spirals possess appealing
properties, e.g., smoothness and intersection-free, making them suitable for 3D printing. 3D printing techniques were applied
to food printing [22], where an arbitrary input image is automatically converted into optimized printable paths with prominent
features, disregarding the tone variation. A dithering technique for 3D printers with at least two extruders was presented for
producing continuous tone variation on models using interleaved color patterns [13]. In the semi-automatic continuous line drawing
method [4], lines were generated by solving several traveling salesman problems (TSP) on each manually segmented region. In
contrast to the dual-color mixing method [13], where at least two nozzles were needed to convey an impression of tone variation, it
generated line segments with distributions consistent with the tone variation. However, this method is computationally expensive
due to the inherent complexity of the TSP. In addition, the line orientations were also random in the results, as a TSP solver
computes the shortest path without taking into account the orientation information. In this paper, we develop a fully automatic
and efficient line drawing algorithm to convert a 2D image into a 3D printable line illustration, where the line orientations are
more precisely controlled, with features and tone variation preserved.
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Figure 2: Comparison of image segmentation methods, where different regions are filled with different colors. (a) Input image;
(b) segmentation result from the graph-based method [5]; (c) segmentation result from the graph cut based method [14]; (d) and
(e) segmentation results from the hierarchical image segmentation method [1], by thresholding ultrametric contour map at levels
0.1 and 0.3, respectively; and (f) result from the active contour based method in [6].

3 Algorithm
3.1 Algorithm Overview

Our framework takes an arbitrary image as input. To obtain color prints while keeping the important features and tone variations
in the image, we need to overcome several obstacles. The first issue is color printing, as we use the 3D printers with only
single/double extruders in this paper. We firstly adapt the segmentation technique to partition the image into a reasonable
number of regions, with each of them printed individually in its own specified color, see Figure 1(b). Secondly, we need to
preserve the most important features of the image. To achieve this goal, we further optimize the contours of each region to make
them suitable for 3D printing, see Figure 1(c). Thirdly, to better capture the features inside each region, an orientation field is
created as a guidance for later streamline generation, see Figure 1(d). Finally, we trace the streamlines, and distances between
them are adaptively controlled such that their distribution is both consistent with the image tone variation and suitable for 3D
printing, see Figure 1(e). The algorithm pipeline is given in Figure 1 and details of each step will be described in the remainder
of this section.

3.2 Image Segmentation

Multi-color printing is the first obstacle for us to address, as the single-extruder or dual-extruder printers are capable of extruding
only one or two colors at a time. Here we segment the original color image into different segments, and then print each of them
individually using filament with a similar color. Image segmentation techniques have been widely studied as it is fundamental
to the fields of image analysis, image understanding and image pattern recognition. Numerous methods/algorithms have been
proposed in different application backgrounds, such as edge detection methods, dual clustering methods, and region growing
methods. However, neither a single theory/method nor universal segmentation framework exists that can be adapted to all
images or applications. For a comprehensive survey of image segmentation techniques, please refer to paper [23]. For the purpose
of this paper, we need a segmentation method which is capable of automatically generate a moderate number of sub-regions,
corresponding to meaningful objects/components and having appropriate sizes and small color variations. These sub-regions do
not need to be simply-connected, however, small pieces should be avoided as they are difficult or even unable to be printed due
to the resolution limit of the printers.

There exist many image segmentation algorithms which offer a basic fit for our application. Here, we compare the performances
of four representatives from the state-of-the-art segmentation methods, including the active contour based method [6], graph-based
method [5], graph cut based method [14], and hierarchical image segmentation method [1]. The active contour based method [6],
which performs best for our application, is adopted in this paper. Owing to the combination of active contours with a statistical
framework, the active contour based method can precisely segment an image into a moderate number of meaningful parts with
few small pieces. As shown in Figure 2, the active contour based method yields less sub-regions than the method in [5], while
provides a more precise segmentation than the method in [14], see the circled regions in Figure 2(b), (c), and (f). By thresholding
ultrametric contour map at different levels, the method in [1] is capable of generating hierarchical segmentations. However, it
may lead to too many segments at a fine level or fail to capture some visually important objects at a coarse level, see Figure 2(d)
and (e).

3.3 Printable Contour Generation

Restricted to the resolution and print size of 3D printers, images fabricated by 3D printers in the line drawing manner have low
resolutions. That is, only a limit number of lines can be used to represent the original image in 3D printing. To better convey
the shapes and objects in the original image, we include the contours of the images into the final printing line set. Based on
the segmentation result, the single-pixel-width boundary of each sub-region is traced out. These contours are represented as
sequences of the boundary pixels. Those zigzag contours, consisting of many short branches and sharp turns, see Figure 3(c), are
not suitable for printing. We should also bear in mind that lines to be printed by a 3D printer have a physical width. Closely
located segments of the contours may cause filament overlapping in the final printing. Hence, the layout of the contours should
be further optimized to reduce the short branches/sharp turns and amplify the distance between closely located segments.

Let us first introduce some notations to assist the discussion. A contour is a sequence of pixels or points, denoted by
T = {vo,v1, - ,vn}, where v; is called a vertex of T. d(v;,v;) = ||v; — vj|| is the ordinary straight-line distance between vertices



Figure 3: Printable contour generation. (a) Input image; (b) segmentation result; (c) initial contours; (d) contour smoothing;
and (e) final contours obtained by pulling apart the segments close to each other.
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Figure 4: Pulling apart closely located segments. (a) Step 1: pulling apart v-region, where v is a feature point, and the segments
between vy, and vg are defined as V-region; and (b) step 2: pulling apart parallel lines, where v* is the closest vertex of v that is
not in §(v, L).

v; and v;j. For two vertices vs,vt € T with s < t, the distance from vertex v; to segments between vs and v¢ on the contour T,
denoted by d(v;, @), is the distance between vertex v; and its closest point on segments between vs and v¢. For any vertex
v €T, 6(vs, L) = {vp, Upg1, -+ , 05, -+ ,Vg—1 ,vVq} C T is the vertex sequence satisfying d(v;,v;) < L, where j = p,--- ,q. That
is, d(v4, L) is the set of neighboring vertices of v; that are within distance L, see Figure 4(b). In addition, we assume that the
pre-specified line width is L.

First, we remove the contours with total length less than L from the contour set. Then, the fairness of the remainder contours
is improved by applying the Laplacian filter, where vertices with turn angle smaller than 7 /6 are marked as feature points and
they are fixed during the faring process to prevent shrinkage at sharp features. A faring result is shown in Figure 3(d). Finally,
we increase the space between closely located segments by applying the following two steps:

Step 1. Starting from each feature vertex v € T, find the last vertices vp, vq (p < ¢) backward and forward along T satisfying
d(vp,D0q), d(vg, Upv) < L. Segments between v, and v, are defined as the V-shape region of v on T, see Figure 4(a) for
instance. Then, each vertex vs between v, and v is moved a distance (L — d(vs,vpv))/2 along the normal direction of
the line. Vertices between v and v are moved in the same manner. Intuitively, a V shape is adjusted to a U shape, see
Figure 4(a) as an example.

Step 2. For any remaining vertex v on the contours, we check if it is too close to other lines. We find its closest vertex v*
which is not in §(v, L), as shown in Figure 4(b). If d(v,v*) < L, then both v* and v are moved backward at a distance
(L — d(v*,v)))/2. This step is applied repeatedly until no vertex out of the V-shape regions needs to be moved. An example
of optimized contours is shown in Figure 3(e).

3.4 Orientation Field Design

With printable contours generated, our next step is to fill each region with curved lines such that they convey the features and
tone variations of the original image. To control line orientations, we design a vector field to guide line placement. Note that, we
cannot directly use the gradient field of the image since the gradient may go to zero at some regions of an image, especially for
cartoon images, as shown in Figure 5. Thus, we use the local contour orientation to derive the orientation vectors at pixels with
a vanished gradient.

The contours obtained in the previous section share overall features with the original image. However, detailed features
located inside each region are missing. Therefore, constructing vector field simply based on contours would ignore textures in
the image. To better convey the original image, we take features in each region into consideration. In particular, we use the
method in [15] to find the feature edges at a finer level and derive vector fields from both the contours and feature edges. The
final vector field used for line placement is a linear combination of these two vector fields. Although the feature edges extracted
using the method in [15] usually contain the object contours in the image, here we consider the contours separately to emphasize
their influence on the final orientation field.

Let Sc and Se be the set of line segments of the obtained contours and feature edges, respectively. For each segment s, we
denote its length and orientation angle by s and s, respectively. A tensor with orientation 6 is defined by a symmetric matrix:

cos(20 sin (26
A0) = ( sin((20§ —00(5(2)9) ) ’

whose two unit eigenvectors give two orthogonal orientation vectors. Then the tensor at any point p on the image is defined by:

T(p):wcz%+wez%y (1)
ses, 1+ d(p, s) ses, 1+ d(p, s)

where d(p, s) is the distance from p to the line segment s, and w. and we are user-specified weights ranging in [0, 1]. Intuitively,

the longer segment has a stronger influence on the field. Meanwhile, the influence of a segment on the field at a point declines

as the distance between the segment and point increases. Figure 1(d) and Figure 5(b) show two orientation fields computed by

using Eq. 1 with w. = 0.2 and we = 0.8, and they are visualized by using the line integral method in [3].
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Figure 5: Orientation field design. (a) Input image; (b) vector field generated from our method; and (c) line drawing result.

43.7% ' 312% 18.8% 6.3%
46.7% ' 23.6% 17.4% 12.4%
43.7% ' 31.1% 185% 6.8%

Figure 6: Line placement results with different spacing functions. (a) Input color ramp; (b) line placement by using the linear
spacing function, and (c) line placement result from our method.

3.5 Streamline Placement

Displaying streamlines is a widely used technique for vector field visualization [9]. Our goal is to depict intensity variations in an
image by using long and adaptively spaced streamlines. Here we study how to control the local density of streamlines, which is
expressed by the distance between two adjacent streamlines.

Our method starts from a random seed point in the field, and then a streamline grows beyond that point backward and
forward by using the Runge-Kutta integrator with a fixed step size. The growing process stops when the line goes too close to
existing streamlines or it reaches the boundary of a region. The new random seed point is selected if its distance to the existing
streamlines is larger than a specific value. The algorithm stops when there is no valid seed point. The remaining problem is
to control the separating distance between streamlines. We can simply compute the distance between streamlines by a linear
function with respect to pixel’s luminance values, as did in [18]:

d(p) = (dmax - dmin)I(p) + dmin,

where dmax and dpyiy are the maximum and minimum distance between streamlines, respectively, and I(p) is the normalized
image luminance at point p. In a color image, the luminance value is usually computed by a weighted combination of three
color channels. We adopt the implementation of color inversion in OpenCV, where each pixel’s luminance value is determined
by 0.299 x Red + 0.587 X Green + 0.114 x Blue. dnin can be set as the width of printing path. That is, printed lines will only
touch each other in the black regions. Figure 6(b) shows a line placement result by using the above linear spacing function. The
percentages in each quarter represent the ink density in the image, and the line density in the line drawings. To better convey the
luminance variations in the image, the area covered by lines in the domain should be proportional to the darkness of the image.
Thus, we have .

- i (2)

where L is the width of the printing path. When I(p) goes to 1, d(p) goes to infinity. In other words, no line appears in white
regions. As shown in Figure 6(c), our new spacing function returns a more precise matching of the reference percentages.

d(p)

4 Experimental Results

We show line drawing results on a variety of input images. Our line drawing algorithm was implemented in C++ on an Intel
Core TM i5 3.2 GHz CPU with 12 GB RAM. The 3D printing experiments were conducted on a Makerbot replicator 2X 3D
desktop printer with Makerware 2.0. Printing results are based on the default setting, where the extrusion width is set at 0.4mm
and layer thickness at 0.2mm in all experiments of this paper. The parameter L (i.e., line width) in our algorithm is set to be
the extrusion width of our 3D printer by default. A supportive raft is generated by Makerware to provide a base for drawing,
therefore we obtain a stable one-piece result. G-code is used to transform the lines to print paths for 3D printer.

We compare our line drawing method with three existing methods, including the Canny edge detector, the EdgeDrawing
method [15] and the TSP-based method [4], as shown in Figure 7. To obtain a quality 3D printing result, lines served as the
printing paths are preferred to be long and continuous with less sharp turns. From Figure 7 we can observe that, the result



Figure 7: Comparisons with other line drawing methods. (a) Input image; (b) result from the Canny edge detector; (c) result
from the EdgeDrawing method [15]; (d) result from the TSP-based method [4]; and (e) our result.

(e)

(e)

Figure 8: Comparison with the maze generation method [19]. (a) Input image; (b) maze patterns from [19]; (c) lines extracted
from (b); (d) 3D printing result of (c); (e) line drawing result from our method; and (f) 3D printing result of (e).

from the Canny edge detector suffers from some obvious flaws, such as containing too many short and zigzag segments. The
EdgeDrawing method is capable of capturing the most important features while introducing less short lines, as compared to the
Canny edge detector. However, it failed to portray the tone variation in the image. The TSP-based method [4] generates long
and fairness lines with a distribution adapting to the tone variation, but the line segments are randomly oriented. Our method
shares the advantages of the TSP-based method, i.e., generating relatively long and continuous lines with distribution adapting
to color intensity. Moreover, our method has superiority in controlling the line orientations.

We also compare our method with the maze generation method [19]. The comparison results have been shown in Figure 8.
Here we only print a part of the original image (Figure 12 in [19]), due to the printing size limit of the 3D printer. Note that, the
maze generation method [19] conveys the tone of the original image by controlling the widths of lines as well as their spacing, as
shown in Figure 8(b). To take them as printing paths, we have to first convert them to line segments with a single width. As
shown in Figure 8(c) and (d), the tone variation of the original image is not well preserved after unifying the line width.

Several monochromatic and color printing results as well as the original images are shown in Figure 9. For color printing,
black filaments are used for printing contour lines. Other lines inside each sub-region are printed by using filaments with the
average color of these lines. As we print all the results using a 3D printer with just one or two extruders, we manually switch
colors by pulling off and re-feeding the filament to the extruder.

A straightforward application of our algorithm is to fabricate stamps from given images, of which two examples are shown
in Figure 10. Table 1 reports the statistics of our method on generating 2D line drawings and 3D printing results. The time for
color printing includes the time for changing the filaments with different colors.

5 Conclusion

This paper presents a fully automatic algorithm for the creation of 2D non-photorealistic line drawing which is suitable for direct
3D printing. An image is partitioned into several regions whose contours considered as the major features are optimized for 3D
printing. To better capture the texture properties of the scene, an orientation filed is derived from the contours and extracted
features to guide the placement of streamlines. The distance between streamlines is carefully controlled such that their distribution
approximates the image intensity. Our approach generates line drawings whose directions are determined by both the contours
and the fine features of the image, as opposed to [4], where the line orientations are random.

Our algorithm fails to handle images containing too many small details in areas with sharp variation of intensity, mainly due

Table 1: Statistics of our method on generating 2D line drawings and 3D prints.

. Image Cluster Orlentatlon. field | Streamline Pringting size | Layer Printing time
Figure . construction placement -
resolution | number (mm) number (min)
(sec) (sec)

1 680x825 4 19.6 25.1 105x130.5 2 45
8(f) 292x240 3 0.6 0.5 132x138.8 2 28
9(a) 642x567 2 7 7.2 135x118.6 2 27
9(b) 900%900 4 249 40.6 115.7x120 2 60
9(c) 427%550 4 24.4 214 86.2x110.5 2 65
9(d) 714x1000 4 115.9 109.4 84.8x117.4 2 79
9(e) 811x478 3 42.9 19.4 135x78.9 3 60
10(a) 428%500 2 3.6 41.2 42.8x50 25 35
10(b) 610x365 3 4.3 20.2 70%x41.2 40 100




Figure 9: Monochromatic (a) and color (b-e) printing results with original images.

(a) (b)

Figure 10: Photographs of 3D fabricated stamps. (a) A 3D printed stamp of 25 layers and a stamped napkin; (b) a 3D printed
stamp of 40 layers and a stamp on a dough.



to the limitation of resolution and print size in 3D printing. One possible solution to improve the printing results is to print the
complicated images as separate components and then assemble them. The printing process with multiple colors is also laborious
in this paper, as the low-end printers work with one or two extruders, and transitions for multiple colors can only be achieved
manually. For future work, we would like to extend our method to convert a given 3D model to wireframes that are suitable for
direct 3D fabrication using robotic fabrication systems.
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